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1. INTRODUCTION

The time-dependent Schridinger equation

L0y _ _ﬁi _
lﬁy = Hy, H-= 2mA\|l+ W(x, H)w,

admits the separation

E
7
y(x, 1) = e"y(x)
of variables x and 7 even in the case of the nonlinear
nonlocal potential W(x, 1)

W(x, 1) = U(x)+ jKIx, v [w(y, 0l 1dy.

Seeking a stationary solution y(x) leads to the fol-
lowing boundary value problem with nonlinear nonlo-
cal potential:

#? N
~2mA\v+ W)y = Ey,

W(x) = Ux) + jK{x, ¥, W)l Idy.

y

In applications, Schrodinger equations of the “polaron
type,” i.e., Bogolyubov—Pekar equations in which the
dependence of the potential on the sought function have
the simplest form

W(x) = Ux)+ | K(x, )y’ (y)dy,

often arise.

2. STATEMENT OF THE PROBLEM

This paper is concerned with constructing analytic
solutions to the one-dimensional Schrodinger equation
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-y"+ W(x)y = Evy,

+oo

W) = U+ [Kx n)w')dy.

The basic assumption is that the kernel K(x, y) is
replaced by its three-term Galerkin approximation

K(x, y) = a(x)b(y) + a;(x)b,(y) + ay(x)by(y).

The standard procedure for decreasing the order, which
dates back to d’ Alambert’s works, yields the following
system of two first-order equations:

V(x) = -2y, 7-2+W = E.

In the linear case, the second equation (in z) does not
contain W and is solved independently; then, the solu-
tion y is written in the form

w(x) = Cexp{-Z(x)}, Z(x) = z.

In the case under consideration, this procedure gives
the following integro-differential equation for the func-
tion z:

2(x) -2 (x) + U(x)

+oo

+C* j K(x, y)exp{—2Z(y)}dy = E.

3. ANALYTIC SOLUTIONS
We seek the solution z in the form
2(x) = p(x)+ogq(x), Z(y) = P(y)+0aQ(y),

where the functions P(x) and Q(x) are antiderivatives of
the functions p(x) and ¢(x); i.e., P'(y) = p(y) and Q'(y) =
q(y). Substituting this into the equation and separating
the variables x and o, we obtain the following four rela-
tions for functions in the variable x and three relations
for functions in the parameter o:

px)-p () +UX) = A, a(x) = 1,

a(x) = ¢'(x) - 2p(x)g(x), ay(x) = ¢°(x);
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+oo0

c? j b(y)exp{-2Z(y, 0)}dy+ A = E,

+oo

c? j b, (v)exp{-2Z(y, o) }dy +a = 0,

+00

C* [ ba(yyexp{-22(y, ) }dy - o’ = 0.

—o0

The integrals converge if P(y) tends to plus infinity suf-
ficiently rapidly, meaning more rapidly than Q(y). The
formulas for the functions a,(x) and U(x) give a “func-
tional parametrization” of the class of Bogolyubov—
Pekar equations. This class is determined by the seven
functions

U(x), a(x), a\(x), ay(x);  b(y), bi(y), b(y),

which are expressed via five functions and one number:

A; p(x), q(x);  b(y), bi(y), by(y).

The Bogolyubov—Pekar equation on this “five-dimen-
sional” (determined by five independent functions)
variety have the analytic solutions

Y(x) = Cexp{-P(x) - aQ(x)}.

Eliminating C and E from the system of equations for
the sought parameters E, C, and o, we obtain a resol-
vent R(a), which determines an equation for the param-
eter o

R(a) = 0.

The definition of the resolvent is fairly complicated,
namely, it is the integral

+oo

R(0) = [ [by(y) + by ()]

x exp{-2P(y)-20aQ(y)}dy.

The equation R(a) = 0 is an analogue of the charac-
teristic (“secular”) equation for linear systems. In the
finite-dimensional case, R(a) = D(o) is merely a poly-
nomial, and the number of its roots coincides with its
degree. In the case under consideration, R(ct) can have an
infinite set of roots. If we solve this equation R(ct) = 0,
then, for each root o, the parameters C and E are eval-
uated by the formulas

2
o

+o0 ’

[ a()exp{-2P(y) - 200(y) }dy

Cc’ =
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+o0

E = A+C [ b(»)exp{-2P(y) - 200(y) }dy.

4. ISO-SYSTEMS

In the linear case, where K(x, y) =0, the value E can
be interpreted as the total energy. In the general case, it
can have a completely different physical (or chemical)
meaning. However, mathematically, this is always the
constant of separation of the space and time variables.

The formula for E implies that, if b(y) = 0, then the
system is “isoenergetic,” because we then have E=A
for any o.

5. CONTINUUM OF SOLUTIONS

The qualitative difference between integro-differen-
tial equations and ordinary differential equations is
clearly seen in the following very interesting special
case.

Suppose that the integrand in the expression for the
resolvent R(a), which is

+o0

R(0) = [ (bo(y) + aby(y)]

x exp{-2P(y) - 20.Q(y)}dy
is the total derivative with respect to the variable y:

o0

R(a) = jd[L(Y)eXp{—ZP(y)—20tQ(y)}]-

In this case, the integral can be evaluated explicitly:

R(e) = [L(y)exp{-2P(y)-20Q(»},2 7,

and the resolvent R() is identically (for all o) equal to
Zero:

R(a)=0.

Thus, a Bogolyubov—Pekar equation can have not only
an infinite set of solution, but also a continuum of solu-
tions (in the example under consideration, they form a
one-parameter set). This remarkable fact follows from
the identity

[b2(y) + Bb (y)lexp{-2P(y) —20.Q(y) }dy
=d[L(y)exp{-2P(y)-20aQ(y)}].

This identity makes it possible to express two functions
b,(y) and b,(y) through one (arbitrary) function L(y):

b,(y) = -2L(y)q(y),
by(y) = =2L(y)p(y) + L'(y).
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In these formulas, p(y) and ¢(y) are the functions intro-
duced above as p(x) and g(x). Thus, we take one arbi-
trary number and four arbitrary functions

A P(x), Q(x); b(y), L(y)

and determine the seven elements of the Bogolyubov—
Pekar equation:

U(x) = A+p(x0)-p'(x), alx) =1,
a(x) = ¢'(x)=2p(x)g(x), ax(x) = ¢*(x),
b(y) = b(y), b(y)=-2L(y)q(y),
by(y) = =2L(y)p(y) + L'(y).

For any «, this equation has the solution

Y(x) = Cexp{-P(x)~aQ(x)}.
Here,

2 (1.2
C =

+oo

[ ba(exp{-2P(y) - 200(y) }dy

6. THE NEIGHBORHOOD
OF THE PLANCK-SCHRODINGER OSCILLATOR

It is useful to consider the following important spe-
ctal case:

A=1 Pl =75, Q) =-x
b(y)=0, L(y) = -¢&y.
Simple evaluations give
Ux) = X, K(x, y) = —¢(l +4xy—2yz),
! = o ,

+o00

£ j (2y" = Dexp{-y’ 20y }dy

2
y(x) = Cexp{w%—ax}.

The complete solution consists of the following two
lines in the plane o, C: either oo = 0 and C is arbitrary
(as in the linear case € = 0) or a is arbitrary and C? =

1
eJn

tion is more evident:

¢ . The following parametrization of the solu-

w(x) = Bexp{—%(x—a)z},
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It shows explicitly the shift (along the x-axis) symmetry
of the solution found. In this parametrization, the com-
plete solution consists of two perpendicular lines in the
plane o, B: either B is arbitrary and o. = O or o is arbi-

trary and B* = 1

ENT

7. CONCLUSIONS
We have found analytic solutions to the polaron-
type Schrodinger equation

ﬁZ
——Ay + W(x)y = Evy,

T (X)y W
i.e., the Bogolyubov—Pekar equation in which the
dependence of the potential on the sought function has
the simplest form

W(x) = U(x)+ j K(x, )W (y)dy,

and the kernel is the three-term Galerkin approximation

K(x,y) = a(x)b(y) +a,(x)b,(y) + a,(x)b,(y).

(i) An equation having analytic solutions is deter-
mined by the functions A; p(x), g(x), b(¥), bi(y), bx(y).

U(x)=A - p'(x) + p(x),

a(x)=1,

a,(x) = ¢'(x) - 2p(x)q(x),

a)(x) = gX(x),

K(x, y) = a(x)b(y) + a;(x)b,(y) + ay(x)by(y).

To construct a solution, it is necessary to find the
antiderivatives P(x) and Q(x) of the functions p(x) and
q(x), respectively:

P'(y) = p(y), Q') = q0y).
First, we construct the resolvent
400
R(0)= [ 1b,(y) +0by ()]
xexp{-2P(y) - 20Q(y) }dy.
Next, we find the parameter o from the equation
R(a) = 0
and obtain the solution in the form
y(x) = Cexp{-P(x)-0Q(x)},
where

2 (X.z
C - ’

+oo

[ b29)exp{-2P(y) - 200(y) Hy
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400

E=A+C j b(y)exp{-2P(y) - 20.Q(y) }dy.

(i1) An important special feature of nonlinear nonlo-
cal Schrodinger equations is the possibility of the exist-
ence of an one-parameter family of solutions. This set
arises if we impose additional conditions on the func-
tions of the variable y:

bi(y) = =2L(y)q(y),
by(y) = =2L(y)p(y) + L'(y).

In this case, the resolvent is identically equal to zero,
ie.,

R(a)=0

and any value of the parameter o gives a solution to the
Schrédinger equation.

(iii) A neighborhood of the Planck-Schrodinger
oscillator. The equation

-y + W)y = v,

+00

W(x) = 2" = [ (1+4xy -2y )W (n)dy
has the one-parameter family of solutions

y(x) = Bexp{—%(x - a)z}.

This family of solutions is invariant with respect to
shifts along the x-axis. The complete solution consists
of two perpendicular lines in the plane o, B: either Bis

4
en

The second line tends to infinity as the perturbation
approaches zero. This is a quite unexpected result
admitting the following paradoxical interpretation: the
ordinary differential equations correspond to infinite
singular points in the class of nonlinear integro-differ-
ential equations.

arbitrary and o = 0 or o is arbitrary and B? =
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